Metabolic and mitogenic effects of IGF-I and insulin on muscle cells of rainbow trout

Author:

Castillo Juan1,Codina Marta1,Martínez María Laura1,Navarro Isabel1,Gutiérrez Joaquim1

Affiliation:

1. Departament de Fisiologia, Facultat de Biologia, Universitat de Barcelona, E-08028 Barcelona, Spain

Abstract

The relative function of IGF-I and insulin on fish muscle metabolism and growth has been investigated by the isolation and culture at different stages (myoblasts at day 1, myocytes at day 4, and myotubes at day 10) of rainbow trout muscle cells. This in vitro model avoids interactions with endogenous peptides, which could interfere with the muscle response. In these cells, the effects of IGF-I and insulin on cell proliferation, 2-deoxyglucose (2-DG), and l-alanine uptake at different development stages, and the use of inhibitors were studied and quantified. Insulin (10-1,000 nM) and IGF-I (10-100 nM) stimulated 2-DG uptake in trout myocytes at day 4 in a similar manner (maximum of 124% for insulin and of 142% for IGF-I), and this stimulation increased when cells differentiated to myotubes (maximum for IGF-I of 193%). When incubating the cells with PD-98059 and especially cytochalasin B, a reduction in 2-DG uptake was observed, suggesting that glucose transport takes place through specific facilitative transporters. IGF-I (1-100 nM) stimulated the l-alanine uptake in myocytes at day 4 (maximum of 239%), reaching higher values of stimulation than insulin (100-1,000 nM) (maximum of 160%). This stimulation decreased when cells developed to myotubes at day 10 (118% for IGF-I and 114% for insulin). IGF-I (0.125-25 nM) had a significant effect on myoblast proliferation, measured by thymidine incorporation (maximum of 170%), and required the presence of 2-5% fetal serum (FBS) to promote thymidine uptake. On the other hand, insulin was totally ineffective in stimulating thymidine uptake. We conclude that IGF-I is more effective than insulin in stimulating glucose and alanine uptake in rainbow trout myosatellite cells and that the degree of stimulation changes when cells differentiate to myotubes. IGF-I stimulates cell proliferation in this model of muscle in vitro and insulin does not. These results indicate the important role of IGF-I on growth and metabolism of fish muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3