Hydrogen peroxide inhibits neurons in the paraventricular nucleus of the hypothalamus via potassium channel activation

Author:

Dantzler Heather A.12,Matott Michael P.12ORCID,Martinez Diana12ORCID,Kline David D.12ORCID

Affiliation:

1. Department of Biomedical Sciences, University of Missouri, Columbia, Missouri

2. Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri

Abstract

The paraventricular nucleus (PVN) of the hypothalamus is an important homeostatic and reflex center for neuroendocrine, respiratory, and autonomic regulation, including during hypoxic stressor challenges. Such challenges increase reactive oxygen species (ROS) to modulate synaptic, neuronal, and ion channel activity. Previously, in the nucleus tractus solitarius, another cardiorespiratory nucleus, we showed that the ROS H2O2 induced membrane hyperpolarization and reduced action potential discharge via increased K+ conductance at the resting potential. Here, we sought to determine the homogeneity of influence and mechanism of action of H2O2 on PVN neurons. We recorded PVN neurons in isolation and in an acute slice preparation, which leaves neurons in their semi-intact network. Regardless of preparation, H2O2 hyperpolarized PVN neurons and decreased action potential discharge. In the slice preparation, H2O2 also decreased spontaneous excitatory postsynaptic current frequency, but not amplitude. To examine potential mechanisms, we investigated the influence of the K+ channel blockers Ba2+, Cs+, and glibenclamide on membrane potential, as well as the ionic currents active at resting potential and outward K+ currents ( IK) upon depolarization. The H2O2 hyperpolarization was blocked by K+ channel blockers. H2O2 did not alter currents between −50 and −110 mV. However, H2O2 induced an outward IK at −50 mV yet, at potentials more positive to 0 mV H2O2, decreased IK. Elevated intracellular antioxidant catalase eliminated H2O2 effects. These data indicate that H2O2 alters synaptic and neuronal properties of PVN neurons likely via membrane hyperpolarization and alteration of IK, which may ultimately alter cardiorespiratory reflexes.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3