Effects of Serotonin on Caudal Raphe Neurons: Activation of an Inwardly Rectifying Potassium Conductance

Author:

Bayliss Douglas A.1,Li Yu-Wen1,Talley Edmund M.1

Affiliation:

1. Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908

Abstract

Bayliss, Douglas A., Yu-Wen Li, and Edmund M. Talley. Effects of serotonin on caudal raphe neurons: activation of an inwardly rectifying potassium conductance. J. Neurophysiol. 77: 1349–1361, 1997. We used whole cell current- and voltage-clamp recording in neonatal rat brain stem slices to characterize firing properties and effects of serotonin (5-HT) on neurons( n = 225) in raphe pallidus (RPa) and raphe obscurus (ROb). Of a sample of 51 Lucifer yellow-filled neurons recovered after immunohistochemical processing to detect tryptophan hydroxylase (TPH), 34 were found to be TPH immunoreactive (i.e., serotonergic). Serotonergic neurons had long-duration action potentials and fired spontaneously at low frequency (∼1 Hz) in a pattern that was often irregular; at higher firing frequencies the discharge became more regular. These neurons displayed spike frequency adaptation, with maximal steady-state firing rates of <4 Hz. The overwhelming majority of identified serotonergic neurons was hyperpolarized by bath-applied 5-HT (94%; n = 32 of 34); conversely, most cells in this sample that were hyperpolarized by 5-HT were serotonergic (78%; n = 32 of 41). TPH-immunonegative neurons were separated into two populations. One group had properties that were indistinguishable from those of serotonergic caudal raphe neurons. The other group was truly distinct; those neurons had more hyperpolarized resting membrane potentials, were not spontaneously active, had shorter-duration action potentials, and were depolarized by 5-HT. Caudal raphe neurons responded to 5-HT (1–5 μM) with membrane hyperpolarization in current clamp (−13.4 ± 1.1 mV, mean ± SE) or with outward current in voltage clamp (16.0 ± 1.4 pA). The current induced by 5-HT was inwardly rectifying and associated with an increase in peak conductance and was highly selective for K+. It was completely blocked by 0.2 mM Ba2+ but not by glibenclamide, an inhibitor of ATP-sensitive K+ channels. Effects of 5-HT were dose dependent, with an EC50 of 0.1–0.3 μM. The 5-HT1A agonist 8-OH-DPAT mimicked, and the 5-HT1A antagonists (+)WAY 100135 and NAN 190 blocked, effects of 5-HT. The 5-HT2A/C antagonist ketanserin did not inhibit the effects of 5-HT. Fewer 5-HT-responsive neurons were encountered in slices exposed acutely to pertussis toxin (∼13%) than in adjacent control slices not exposed to pertussis toxin (∼85%). In addition, in neurons recorded with pipettes containing GTPγS (0.1 mM), 5-HT induced an inwardly rectifying current that did not reverse on washing. In many cells recorded with GTPγS, a current developed in the absence of agonist that had properties identical to those of the 5-HT-sensitive current; when followed for extended periods, the agonist-independent GTPγS-induced conductance desensitized, returning toward control levels with a time constant of ∼18 min. Together these results indicate that serotonergic neurons of ROb and RPa are spontaneously active in a neonatal rat brain stem slice preparation and that hyperpolarization of those neurons by 5-HT1A receptor stimulation is due to pertussis toxin-sensitive G protein-mediated activation of an inwardly rectifying K+ conductance. In addition, we identified a group of nonserotonergic medullary raphe neurons that had distinct electrophysiological properties and that was depolarized by 5-HT.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3