Skeletal muscle eEF2 and 4EBP1 phosphorylation during endurance exercise is dependent on intensity and muscle fiber type

Author:

Rose Adam J.,Bisiani Bruno,Vistisen Bodil,Kiens Bente,Richter Erik A.

Abstract

Protein synthesis in skeletal muscle is known to decrease during exercise, and it has been suggested that this may depend on the magnitude of the relative metabolic stress within the contracting muscle. To examine the mechanisms behind this, the effect of exercise intensity on skeletal muscle eukaryotic elongation factor 2 (eEF2) and eukaryotic initiation factor 4E binding protein 1 (4EBP1) phosphorylation, key components in the mRNA translation machinery, were examined together with AMP-activated protein kinase (AMPK) in healthy young men. Skeletal muscle eEF2 phosphorylation at Thr56 increased during exercise but was not influenced by exercise intensity, and was lower than rest 30 min after exercise. On the other hand, 4EBP1 phosphorylation at Thr37/46 decreased during exercise, and this decrease was greater at higher exercise intensities and was similar to rest 30 min after exercise. AMPK activity, as indexed by AMPK α-subunit phosphorylation at Thr172 and phosphorylation of the AMPK substrate ACCβ at Ser221, was higher with higher exercise intensities, and these indices were higher than rest after high-intensity exercise only. Using immunohistochemistry, it was shown that the increase in skeletal muscle eEF2 Thr56 phosphorylation was restricted to type I myofibers. Taken together, these data suggest that the depression of skeletal muscle protein synthesis with endurance-type exercise may be regulated at both initiation (i.e., 4EBP1) and elongation (i.e., eEF2) steps, with eEF2 phosphorylation contributing at all exercise intensities but 4EBP1 dephosphorylation contributing to a greater extent at high vs. low exercise intensities.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3