Resistance‐only and concurrent exercise induce similar myofibrillar protein synthesis rates and associated molecular responses in moderately active men before and after training

Author:

Lee Matthew J.1ORCID,Caruana Nikeisha J.12ORCID,Saner Nicholas J.1ORCID,Kuang Jujiao1ORCID,Stokes Tanner3,McLeod Jonathan C.3ORCID,Oikawa Sara Y.3ORCID,Bishop David J.1ORCID,Bartlett Jonathan D.1ORCID,Phillips Stuart M.3ORCID

Affiliation:

1. Institute for Health and Sport Victoria University Melbourne Victoria Australia

2. Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute The University of Melbourne Parkville Victoria Australia

3. Department of Kinesiology McMaster University Hamilton Ontario Canada

Abstract

AbstractAerobic and resistance exercise (RE) induce distinct molecular responses. One hypothesis is that these responses are antagonistic and unfavorable for the anabolic response to RE when concurrent exercise is performed. This thesis may also depend on the participants' training status and concurrent exercise order. We measured free‐living myofibrillar protein synthesis (MyoPS) rates and associated molecular responses to resistance‐only and concurrent exercise (with different exercise orders), before and after training. Moderately active men completed one of three exercise interventions (matched for age, baseline strength, body composition, and aerobic capacity): resistance‐only exercise (RE, n = 8), RE plus high‐intensity interval exercise (RE+HIIE, n = 8), or HIIE+RE (n = 9). Participants trained 3 days/week for 10 weeks; concurrent sessions were separated by 3 h. On the first day of Weeks 1 and 10, muscle was sampled immediately before and after, and 3 h after each exercise mode and analyzed for molecular markers of MyoPS and muscle glycogen. Additional muscle, sampled pre‐ and post‐training, was used to determine MyoPS using orally administered deuterium oxide (D2O). In both weeks, MyoPS rates were comparable between groups. Post‐exercise changes in proteins reflective of protein synthesis were also similar between groups, though MuRF1 and MAFbx mRNA exhibited some exercise order‐dependent responses. In Week 10, exercise‐induced changes in MyoPS and some genes (PGC‐1ɑ and MuRF1) were dampened from Week 1. Concurrent exercise (in either order) did not compromise the anabolic response to resistance‐only exercise, before or after training. MyoPS rates and some molecular responses to exercise are diminished after training.

Publisher

Wiley

Subject

Genetics,Molecular Biology,Biochemistry,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3