Significance of vessel size and type in vascular heat transfer

Author:

Lemons D. E.,Chien S.,Crawshaw L. I.,Weinbaum S.,Jiji L. M.

Abstract

This study was undertaken to gain a better understanding of the fundamental mechanisms of micro- and macrovascular heat transfer by experimentally identifying those vessels most important in the process. Tissue temperature fields around thermally nonequilibrated vessels were determined using a small temperature sensor that was guided through the rabbit thigh to generate a detailed temperature map. The measurements revealed that the lower limit of vessel size for thermal nonequilibration was 100 microns for arteries and 400 microns for veins. Local temperature fields were found around four of the five (80%) arteries that were greater than 300 microns in diameter but in only 3 of the 12 (25%) veins greater than 400 microns. These experimental results are in good agreement with previously published theoretical studies (5) in which it was concluded that thermal equilibration in the branching countercurrent vascular network of the rabbit limb occurs in vessels an order of magnitude larger than the capillaries. In those studies the smallest vessels capable of carrying heat were predicted to be 50 microns ID with the major blood tissue heat exchange occurring in vessels greater than 100 micron ID. These findings contrast with the view that most heat transfer occurs in the capillaries and suggest that vascular heat transfer analysis must take into account the vascular architecture of the 50- to 1,000-micron vessels where most heat transfer occurs.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3