Personalized predictions and non-invasive imaging of human brain temperature

Author:

Sung DongsukORCID,Kottke Peter A.,Risk Benjamin B.ORCID,Allen Jason W.ORCID,Nahab FadiORCID,Fedorov Andrei G.ORCID,Fleischer Candace C.ORCID

Abstract

AbstractBrain temperature is an important yet understudied medical parameter, and increased brain temperature after injury is associated with worse patient outcomes. The scarcity of methods for measuring brain temperature non-invasively motivates the need for computational models enabling predictions when clinical measurements are challenging. Here, we develop a biophysical model based on the first principles of energy and mass conservation that uses data from magnetic resonance imaging of individual brain tissue and vessel structure to facilitate personalized brain temperature predictions. We compare model-predicted 3D thermal distributions with experimental temperature measured using whole brain magnetic resonance-based thermometry. We find brain thermometry maps predicted by the model capture unique spatial variations for each subject, which are in agreement with experimentally-measured temperatures. As medicine becomes more personalized, this foundational study provides a framework to develop an individualized approach for brain temperature predictions.

Funder

Internal funding for salaries only. No external/grant funding.

Publisher

Springer Science and Business Media LLC

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3