Melatonin supplementation alters uteroplacental hemodynamics and fetal development in an ovine model of intrauterine growth restriction

Author:

Lemley Caleb O.1,Meyer Allison M.1,Camacho Leticia E.1,Neville Tammi L.1,Newman David J.1,Caton Joel S.1,Vonnahme Kimberly A.1

Affiliation:

1. Center for Nutrition and Pregnancy, Department of Animal Sciences, North Dakota State University, Fargo, North Dakota

Abstract

Using a mid- to late-gestation ovine model of intrauterine growth restriction (IUGR), we examined uteroplacental blood flow and fetal growth during melatonin supplementation as a 2 × 2 factorial design. At day 50 of gestation, 32 ewes were supplemented with 5 mg of melatonin (MEL) or no melatonin (CON) and were allocated to receive 100% [adequate; (ADQ)] or 60% [restricted (RES)] of nutrient requirements until day 130 of gestation. Umbilical artery blood flow was increased from day 60 to day 110 of gestation in MEL vs. CON dams, while umbilical artery blood flow was decreased from day 80 to day 110 of gestation in RES vs. ADQ dams. At day 130 of gestation, uteroplacental hemodynamics, measured under general anesthesia, and fetal growth were evaluated. Uterine artery blood flow was decreased in RES vs. ADQ dams, while melatonin supplementation did not affect uterine artery blood flow. Total placentome weight and placentome number were not different between treatment groups. Fetal weight was decreased by nutrient restriction. Abdominal girth and ponderal index were increased in fetuses from MEL-ADQ dams vs. all other groups. Fetal biparietal distance was decreased in CON-RES vs. CON-ADQ dams, while melatonin supplementation rescued fetal biparietal distance. Fetal kidney length and width were increased by maternal melatonin treatment. Fetal cardiomyocyte area was altered by both maternal melatonin treatment and nutritional plane. In summary, melatonin may negate the consequences of IUGR during specific abnormalities in umbilical blood flow as long as sufficient uterine blood perfusion is maintained during pregnancy.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3