The cellular force-frequency response in ventricular myocytes from the varanid lizard, Varanus exanthematicus

Author:

Warren Daniel E.1,Galli Gina L. J.2,Patrick Simon M.1,Shiels Holly A.1

Affiliation:

1. Faculty of Life Sciences, University of Manchester, Core Technology Facility, Manchester, United Kingdom; and

2. Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

To investigate the cellular mechanisms underlying the negative force-frequency relationship (FFR) in the ventricle of the varanid lizard, Varanus exanthematicus , we measured sarcomere and cell shortening, intracellular Ca2+([Ca2+]i), action potentials (APs), and K+currents in isolated ventricular myocytes. Experiments were conducted between 0.2 and 1.0 Hz, which spans the physiological range of in vivo heart rates at 20–22°C for this species. As stimulation frequency increased, diastolic length, percent change in sarcomere length, and relaxation time all decreased significantly. Shortening velocity was unaffected. These changes corresponded to a faster rate of rise of [Ca2+]i, a decrease in [Ca2+]itransient amplitude, and a seven-fold increase in diastolic [Ca2+]i. The time constant for the decay of the Ca2+transient (τ) decreased at higher frequencies, indicating a frequency-dependent acceleration of relaxation (FDAR) but then reached a plateau at moderate frequencies and did not change above 0.5 Hz. The rate of rise of the AP was unaffected, but the AP duration (APD) decreased with increasing frequency. Peak depolarization tended to decrease, but it was only significant at 1.0 Hz. The decrease in APD was not due to frequency-dependent changes in the delayed inward rectifier ( IKr) or the transient outward ( Ito) current, as neither appeared to be present in varanid ventricular myocytes. Our results suggest that a negative FFR relationship in varanid lizard ventricle is caused by decreased amplitude of the Ca2+transient coupled with an increase in diastolic Ca2+, which leads to incomplete relaxation between beats at high frequencies. This coincides with shortened APD at higher frequencies.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3