High [Na+]i in cardiomyocytes from rainbow trout

Author:

Birkedal Rikke,Shiels Holly A.

Abstract

Intracellular Na+-concentration, [Na+]i modulates excitation-contraction coupling of cardiac myocytes via the Na+/Ca2+ exchanger (NCX). In cardiomyocytes from rainbow trout ( Oncorhyncus mykiss), whole cell patch-clamp studies have shown that Ca2+ influx via reverse-mode NCX contributes significantly to contraction when [Na+]i is 16 mM but not 10 mM. However, physiological [Na+]i has never been measured. We recorded [Na+]i using the fluorescent indicator sodium-binding benzofuran isophthalate in freshly isolated atrial and ventricular myocytes from rainbow trout. We examined [Na+]i at rest and during increases in contraction frequency across three temperatures that span those trout experience in nature (7, 14, and 21°C). Surprisingly, we found that [Na+]i was not different between atrial and ventricular cells. Furthermore, acute temperature changes did not affect [Na+]i in resting cells. Thus, we report a resting in vivo [Na+]i of 13.4 mM for rainbow trout cardiomyocytes. [Na+]i increased from rest with increases in contraction frequency by 3.2, 4.7, and 6.5% at 0.2, 0.5, and 0.8 Hz, respectively. This corresponds to an increase of 0.4, 0.6, and 0.9 mM at 0.2, 0.5, and 0.8 Hz, respectively. Acute temperature change did not significantly affect the contraction-induced increase in [Na+]i. Our results provide the first measurement of [Na+]i in rainbow trout cardiomyocytes. This surprisingly high [Na+]i is likely to result in physiologically significant Ca2+ influx via reverse-mode NCX during excitation-contraction coupling. We calculate that this Ca2+-source will decrease with the action potential duration as temperature and contraction frequency increases.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Reference37 articles.

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3