Amylin potently activates AP neurons possibly via formation of the excitatory second messenger cGMP

Author:

Riediger Thomas1,Schmid Herbert A.1,Lutz T.2,Simon E.1

Affiliation:

1. Max Planck Institute for Physiological and Clinical Research, W. G. Kerckhoff Institute, 61231 Bad Nauheim, Germany; and

2. Institute of Veterinary Physiology, University of Zurich, 8057 Zurich, Switzerland

Abstract

Amylin is secreted with insulin from the pancreas during and after food intake. One of the most potent actions of amylin in vivo is its anorectic effect, which is directly mediated by the area postrema (AP), a circumventricular organ lacking a functional blood-brain barrier. As we recently demonstrated, amylin also stimulates water intake most likely via its excitatory action on subfornical organ (SFO) neurons. Neurons investigated under equal conditions in an in vitro slice preparation of the rat AP were 15-fold more sensitive to amylin than SFO neurons. Amylin (10−11–10−8 M) excited 48% of 94 AP neurons tested; the remaining cells were insensitive. The average threshold concentration of the excitatory response was 10−10 M and, thus, close to physiological plasma concentrations. Coapplication of the amylin receptor antagonist AC-187 reduced amylin's excitatory effect. Amylin-mediated activation of AP neurons and antagonistic action of AC-187 were confirmed in vivo by c- fos studies. Peripherally applied amylin stimulated cGMP formation in AP and SFO neurons, as shown in immunohistochemical studies. This response was independent of nitric oxide (NO) formation in the AP, while coapplication of the NO synthase inhibitors N-monomethyl-l-arginine (100 mg/kg) and nitro-l-arginine methyl ester (50 mg/kg) blocked cGMP formation in the SFO. In contrast to the SFO, where NO-dependent cGMP formation seems to represent a general inhibitory transduction pathway, cGMP acts as an excitatory second messenger in the AP, since the membrane-permeable analog 8-bromo-cGMP stimulated 65% of all neurons tested ( n = 17), including seven of nine amylin-sensitive neurons (77%). The results indicate that the anorectic effect of circulating amylin is based on its excitatory action on AP neurons, with cGMP acting as a second messenger.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3