Abstract
AbstractObesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Publisher
Springer Science and Business Media LLC
Reference634 articles.
1. Gregg, E. W. et al. Global health effects of overweight and obesity. N. Engl. J. Med. 377, 80–81 (2017).
2. NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 390, 2627–2642 (2017).
3. Font-Burgada, J. et al. Obesity and cancer: the oil that feeds the flame. Cell Metab. 23, 48–62 (2016).
4. Mohammed, M. S. et al. Systems and WBANs for controlling obesity. J. Health. Eng. 2018, 1564748 (2018).
5. Deng, Y. et al. Targeting mitochondria-inflammation circuit by β-hydroxybutyrate mitigates HFpEF. Circ. Res. 128, 232–245 (2021).
Cited by
142 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献