Metabolic and vascular support for the role of myoglobin in humans: a multiparametric NMR study

Author:

Duteil S.,Bourrilhon C.,Raynaud J. S.,Wary C.,Richardson R. S.,Leroy-Willig A.,Jouanin J. C.,Guezennec C. Y.,Carlier P. G.

Abstract

In human muscle the role of myoglobin (Mb) and its relationship to factors such as muscle perfusion and metabolic capacity are not well understood. We utilized nuclear magnetic resonance (NMR) to simultaneously study the Mb concentration ([Mb]), perfusion, and metabolic characteristics in calf muscles of athletes trained long term for either sprint or endurance running after plantar flexion exercise and cuff ischemia. The acquisitions for 1H assessment of Mb desaturation and concentration, arterial spin labeling measurement of muscle perfusion, and 31P spectroscopy to monitor high-energy phosphate metabolites were interleaved in a 4-T magnet. The endurance-trained runners had a significantly elevated [Mb] (0.28 ± 0.06 vs. 0.20 ± 0.03 mmol/kg). The time constant of creatine rephosphorylation (τPCr), an indicator of oxidative capacity, was both shorter in the endurance-trained group (34 ± 6 vs. 64 ± 20 s) and negatively correlated with [Mb] across all subjects ( r = 0.58). The time to reach maximal perfusion after cuff release was also both shorter in the endurance-trained group (306 ± 74 vs. 560 ± 240 s) and negatively correlated with [Mb] ( r = 0.56). Finally, Mb reoxygenation rate tended to be higher in the endurance-trained group and was positively correlated with τPCr ( r = 0.75). In summary, these NMR data reveal that [Mb] is increased in human muscle with a high oxidative capacity and a highly responsive vasculature, and the rate at which Mb resaturates is well correlated with the rephosphorylation rate of Cr, each of which support a teleological role for Mb in O2 transport within highly oxidative human skeletal muscle.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3