O2 delivery at VO2max and oxidative capacity in muscles of standardbred horses

Author:

Armstrong R. B.1,Essen-Gustavsson B.1,Hoppeler H.1,Jones J. H.1,Kayar S. R.1,Laughlin M. H.1,Lindholm A.1,Longworth K. E.1,Taylor C. R.1,Weibel E. R.1

Affiliation:

1. Muscle Biology Laboratory, University of Georgia, Athens 30602.

Abstract

The purpose of this study was to describe the relationships between 16 physiological, biochemical, and morphological variables presumed to relate to the oxidative capacity in quadriceps muscles or muscle parts in Standardbred horses. The variables included O2 delivery (blood flow) and mean capillary transit time (MTT) during treadmill locomotion at whole animal maximal O2 consumption (VO2max, 134 +/- 2 ml.min-1 x kg-1), capillary density and capillary-to-fiber ratio, myoglobin concentration, oxidative enzyme activities, glycolytic enzyme activities, fiber type populations, and fiber size. These components of muscle metabolic capacity were found to be interrelated to varying degrees using correlation matrix analysis, with lactate dehydrogenase activity showing the most significant correlations (n = 14) with other variables. Most of the “oxidative” variables occurred in the highest quantities in the deepest muscle of the group (vastus intermedius) and in the deepest parts of the other quadriceps muscles where the highest proportions of type I fibers were localized. The highest blood flow measured with microspheres in the muscle group during exercise was in vastus intermedius muscle (145 ml.min-1 x 100 g-1), and the lowest was in the superficial part of rectus femoris muscle (32 ml.min-1 x 100 g-1). Average muscle blood flow during exercise at whole animal VO2max was 116 ml.min-1 x 100 g-1. Because skeletal muscle comprised 43% of total body mass (453 +/- 34 kg), total muscle blood flow was estimated at 226 l/min, which was approximately 78% of total cardiac output (288 l/min).(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3