Dynamics of tracheal compression in the horned passalus beetle

Author:

Waters James S.1,Lee Wah-Keat2,Westneat Mark W.3,Socha John J.4

Affiliation:

1. Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey;

2. Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois;

3. Department of Zoology, Field Museum of Natural History, Chicago, Illinois; and

4. Department of Engineering Science and Mechanics, Virginia Tech, Blacksburg, Virginia

Abstract

Rhythmic patterns of compression and reinflation of the thin-walled hollow tubes of the insect tracheal system have been observed in a number of insects. These movements may be important for facilitating the transport and exchange of respiratory gases, but observing and characterizing the dynamics of internal physiological systems within live insects can be challenging due to their size and exoskeleton. Using synchrotron X-ray phase-contrast imaging, we observed dynamical behavior in the tracheal system of the beetle, Odontotaenius disjunctus. Similar to observations of tracheal compression in other insects, specific regions of tracheae in the thorax of O. disjunctus exhibit rhythmic collapse and reinflation. During tracheal compression, the opposing sides of a tracheal tube converge, causing the effective diameter of the tube to decrease. However, a unique characteristic of tracheal compression in this species is that certain tracheae collapse and reinflate with a wavelike motion. In the dorsal cephalic tracheae, compression begins anteriorly and continues until the tube is uniformly flattened; reinflation takes place in the reverse direction, starting with the posterior end of the tube and continuing until the tube is fully reinflated. We report the detailed kinematics of this pattern as well as additional observations that show tracheal compression coordinated with spiracle opening and closing. These findings suggest that tracheal compression may function to drive flow within the body, facilitating internal mixing of respiratory gases and ventilation of distal regions of the tracheal system.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3