The O2cost of the tension-time integral in isolated single myocytes during fatigue

Author:

Hepple Russell T.12,Howlett Richard A.3,Kindig Casey A.3,Stary Creed M.3,Hogan Michael C.3

Affiliation:

1. Faculty of Kinesiology and

2. Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada; and

3. Department of Medicine, University of California-San Diego, La Jolla, California

Abstract

One proposed explanation for the V̇o2slow component is that lower-threshold motor units may fatigue and develop little or no tension but continue to use O2, thereby resulting in a dissociation of cellular respiration from force generation. The present study used intact isolated single myocytes with differing fatigue resistance profiles to investigate the relationship between fatigue, tension development, and aerobic metabolism. Single Xenopus skeletal muscle myofibers were allocated to a fast-fatiguing (FF) or a slow-fatiguing (SF) group, based on the contraction frequency required to elicit a fall in tension to 60% of peak. Phosphorescence quenching of a porphyrin compound was used to determine Δ intracellular Po2(PiO2; a proxy for V̇o2), and developed isometric tension was monitored to allow calculation of the time-integrated tension (TxT). Although peak ΔPiO2was not different between groups ( P = 0.36), peak tension was lower ( P < 0.05) in SF vs. FF (1.97 ± 0. 17 V vs. 2. 73 ± 0.30 V, respectively) and time to 60% of peak tension was significantly longer in SF vs. FF (242 ± 10 s vs. 203 ± 10 s, respectively). Before fatigue, both ΔPiO2and TxT rose proportionally with contraction frequency in SF and FF, resulting in ΔPiO2/TxT being identical between groups. At fatigue, TxT fell dramatically in both groups, but ΔPiO2decreased proportionately only in the FF group, resulting in an increase in ΔPiO2/TxT in the SF group relative to the prefatigue condition. These data show that more fatigue-resistant fibers maintain aerobic metabolism as they fatigue, resulting in an increased O2cost of contractions that could contribute to the V̇o2slow component seen in whole body exercise.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3