Blockade of fatty acid oxidation mimics phase II-phase III transition in a fasting bird, the king penguin

Author:

Bernard Servane F.1,Mioskowski Eliane1,Groscolas René1

Affiliation:

1. Centre d'Ecologie et Physiologie Energétiques, Centre National de la Recherche Scientifique, 67087 Strasbourg, France

Abstract

This study tests the hypothesis that the metabolic and endocrine shift characterizing the phase II-phase III transition during prolonged fasting is related to a decrease in fatty acid (FA) oxidation. Changes in plasma concentrations of various metabolites and hormones and in lipolytic fluxes, as determined by continuous infusion of [2-3H]glycerol and [1-14C]palmitate, were examined in vivo in spontaneously fasting king penguins in the phase II status (large fat stores, protein sparing) before, during, and after treatment with mercaptoacetate (MA), an inhibitor of FA oxidation. MA induced a 7-fold decrease in plasma β-hydroxybutyrate and a 2- to 2.5-fold increase in plasma nonesterified fatty acids (NEFA), glycerol, and triacylglycerols. MA also stimulated lipolytic fluxes, increasing the rate of appearance of NEFA and glycerol by 60–90%. This stimulation might be partly mediated by a doubling of circulating glucagon, with plasma insulin remaining unchanged. Plasma glucose level was unaffected by MA treatment. Plasma uric acid increased 4-fold, indicating a marked acceleration of body protein breakdown, possibly mediated by a 2.5-fold increase in circulating corticosterone. Strong similarities between these changes and those observed at the phase II-phase III transition in fasting penguins support the view that entrance into phase III, and especially the end of protein sparing, is related to decreased FA oxidation, rather than reduced NEFA availability. MA could be therefore a useful tool for understanding mechanisms underlying the phase II-phase III transition in spontaneously fasting birds and the associated stimulation of feeding behavior.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3