Regional responsiveness of renal perfusion to activation of the renal nerves

Author:

Guild Sarah-Jane1,Eppel Gabriela A.2,Malpas Simon C.1,Rajapakse Niwanthi W.2,Stewart Alistair3,Evans Roger G.2

Affiliation:

1. Circulatory Control Laboratory, Departments of Physiology and Electrical and Electronic Engineering, and

2. Department of Physiology, Monash University, Melbourne, 3800 Australia

3. Biostatistics Unit, Division of Community Health, University of Auckland, Auckland, New Zealand; and

Abstract

We tested for regional differences in perfusion responses, within the renal medulla and cortex, to renal nerve stimulation in pentobarbital sodium-anesthetized rabbits. Laser-Doppler flux (LDF) was monitored at various depths below the cortical surface (1–15 mm). Basal cortical LDF (1–3 mm, ∼200–450 U) was greater than medullary LDF (5–15 mm, ∼70–160 U), but there were no statistically significant differences in basal LDF within these regions. The background LDF signal during aortic occlusion was similar in the cortex (2 mm, 31 U) and outer medulla (7 mm, 31 U), but slightly greater in the inner medulla (12 mm, 44 U). During electrical stimulation of the renal nerves (0.5–8 Hz), cortical LDF and total renal blood flow were similarly progressively reduced with increasing stimulus frequency. Medullary LDF (measured between 5 and 15 mm) was overall less responsive than cortical LDF. For example, 4-Hz stimulation reduced inner medullary LDF (9 mm) by 19 ± 6% but reduced cortical LDF (1 mm) by 54 ± 11%. However, medullary LDF responses to nerve stimulation were similar at all depths measured. Our results indicate that while the vascular elements controlling medullary perfusion are less sensitive to the effects of electrical stimulation of the renal nerves than are those controlling cortical perfusion, sensitivity within these vascular territories appears to be relatively homogeneous.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sodium Homeostasis, a Balance Necessary for Life;Nutrients;2023-01-12

2. Renal and segmental artery hemodynamics during whole body passive heating and cooling recovery;Journal of Applied Physiology;2019-10-01

3. Epigenetic modification: a regulatory mechanism in essential hypertension;Hypertension Research;2019-03-13

4. Complex reinnervation pattern after unilateral renal denervation in rats;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2016-05-01

5. Epigenetic Modifications in Essential Hypertension;International Journal of Molecular Sciences;2016-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3