Role of the renal medulla in volume and arterial pressure regulation

Author:

Cowley A. W.1

Affiliation:

1. Department of Physiology, Medical College of Wisconsin, Milwaukee53226, USA.

Abstract

The original fascination with the medullary circulation of the kidney was driven by the unique structure of vasa recta capillary circulation, which Berliner and colleagues (Berliner, R. W., N. G. Levinsky, D. G. Davidson, and M. Eden. Am. J. Med. 24: 730-744, 1958) demonstrated could provide the economy of countercurrent exchange to concentrate large volumes of blood filtrate and produce small volumes of concentrated urine. We now believe we have found another equally important function of the renal medullary circulation. The data show that it is indeed the forces defined by Starling 100 years ago that are responsible for the pressure-natriuresis mechanisms through the transmission of changes of renal perfusion pressure to the vasa recta circulation. Despite receiving only 5-10% of the total renal blood flow, increases of blood flow to this region of the kidney cause a washout of the medullary urea gradient and a rise of the renal interstitial fluid pressure. These forces reduce tubular reabsorption of sodium and water, leading to a natriuresis and diuresis. Many of Starling's intrinsic chemicals, which he named "hormones," importantly modulate this pressure-natriuresis response by altering both the sensitivity and range of arterial pressure around which these responses occur. The vasculature of the renal medulla is uniquely sensitive to many of these vasoactive agents. Finally, we have found that the renal medullary circulation can play an important role in determining the level of arterial pressure required to achieve long-term fluid and electrolyte homeostasis by establishing the slope and set point of the pressure-natriuresis relationship. Measurable decreases of blood flow to the renal medulla with imperceptible changes of total renal blood flow can lead to the development of hypertension. Many questions remain, and it is now evident that this is a very complex regulatory system. It appears, however, that the medullary blood flow is a potent determinant of both sodium and water excretion and signals changes in blood volume and arterial pressure to the tubules via the physical forces that Professor Starling so clearly defined 100 years ago.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 196 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3