Development aggravates the severity of skeletal muscle catabolism induced by endotoxemia in neonatal pigs

Author:

Orellana Renán A.12,Suryawan Agus1,Wilson Fiona A.1,Gazzaneo María C.12,Fiorotto Marta L.1,Nguyen Hanh V.1,Davis Teresa A.1

Affiliation:

1. United States Department of Agriculture/Agriculture Research Service, Children's Nutrition Research Center; and

2. Critical Care Section, Department of Pediatrics, Baylor College of Medicine, Houston, Texas

Abstract

Accretion rates of muscle protein are elevated in normal neonates, but this anabolic drive decreases with maturation. As this change occurs, it is not known whether development also influences muscle protein catabolism induced by sepsis. We hypothesize that protein degradation in skeletal muscle induced by endotoxemia becomes more severe as the neonate develops. Fasted 7- and 26-day-old pigs were infused for 8 h with LPS (0 and 10 μg·kg−1·h−1), while plasma amino acids (AA), 3-methylhistidine (3-MH), and α-actin concentrations and muscle protein degradation signal activation were determined ( n = 5–7/group/age). Plasma full-length α-actin was greater in 7- than 26-day-old pigs, suggesting a higher baseline protein turnover in neonatal pigs. LPS increased plasma total AA, 3-MH, and full-length and cleaved α-actin in 26- than in 7-day-old pigs. In muscle of both age groups, LPS increased AMPK and NF-κB phosphorylation, the abundances of activated caspase 3 and E-3 ligases MuRF1 and atrogin1, as well as the abundance of cleaved α-actin, suggesting activation of muscle proteolysis by endotoxin in muscle. LPS decreased Forkhead box 01 (Fox01) and Fox04 phosphorylation and increased procaspase 3 abundance in muscle of 26-day-old pigs despite the lack of effect of LPS on PKB phosphorylation. The results suggest that skeletal muscle in healthy neonatal pigs maintains high baseline degradation signal activation that cannot be enhanced by endotoxin, but as maturation advances, the effect of LPS on muscle protein catabolism manifests its severity.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3