Author:
de Tombe Pieter P.,Belus Alexandra,Piroddi Nicoletta,Scellini Beatrice,Walker John S.,Martin Anne F.,Tesi Chiara,Poggesi Corrado
Abstract
We employed single myofibril techniques to test whether the presence of slow skeletal troponin-I (ssTnI) is sufficient to induce increased myofilament calcium sensitivity (EC50) and whether modulation of EC50 affects the dynamics of force development. Studies were performed using rabbit psoas myofibrils activated by rapid solution switch and in which Tn was partially replaced for either recombinant cardiac Tn(cTn) or Tn composed of recombinant cTn-T (cTnT) and cTn-C (cTnC), and recombinant ssTnI (ssTnI-chimera Tn). Tn exchange was performed in rigor solution (0.5 mg/ml Tn; 20°C; 2 h) and confirmed by SDS-PAGE. cTnI exchange induced a decrease in EC50; ssTnI-chimera Tn exchange induced a further decrease in EC50 (in μM: endogenous Tn, 1.35 ± 0.08; cTnI, 1.04 ± 0.13; ssTnI-chimera Tn, 0.47 ± 0.03). EC50 was also decreased by application of 100 μM bepridil (control: 2.04 ± 0.03 μM; bepridil 1.35 ± 0.03 μM). Maximum tension was not different between any groups. Despite marked alterations in EC50, none of the dynamic activation-relaxation parameters were affected under any condition. Our results show that 1) incorporation of ssTnI into the fast skeletal sarcomere is sufficient to induce increased myofilament Ca2+ sensitivity, and 2) the dynamics of actin-myosin interaction do not correlate with EC50. This result suggests that intrinsic cross-bridge cycling rate is not altered by the dynamics of thin-filament activation.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献