The relationship between contractile force and intracellular [Ca2+] in intact rat cardiac trabeculae.

Author:

Backx P H1,Gao W D1,Azan-Backx M D1,Marban E1

Affiliation:

1. Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

The control of force by [Ca2+] was investigated in rat cardiac trabeculae loaded with fura-2 salt. At sarcomere lengths of 2.1-2.3 microns, the steady state force-[Ca2+]i relationship during tetanization in the presence of ryanodine was half maximally activated at a [Ca2+]i of 0.65 +/- 0.19 microM with a Hill coefficient of 5.2 +/- 1.2 (mean +/- SD, n = 9), and the maximal stress produced at saturating [Ca2+]i equalled 121 +/- 35 mN/mm2 (n = 9). The dependence of steady state force on [Ca2+]i was identical in muscles tetanized in the presence of the Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA). The force-[Ca2+]i relationship during the relaxation of twitches in the presence of CPA coincided exactly to that measured at steady state during tetani, suggesting that CPA slows the decay rate of [Ca2+]i sufficiently to allow the force to come into a steady state with the [Ca2+]i. In contrast, the relationship of force to [Ca2+]i during the relaxation phase of control twitches was shifted leftward relative to the steady state relationship, establishing that relaxation is limited by the contractile system itself, not by Ca2+ removal from the cytosol. Under control conditions the force-[Ca2+]i relationship, quantified at the time of peak twitch force (i.e., dF/dt = 0), coincided fairly well with steady state measurements in some trabeculae (i.e., three of seven). However, the force-[Ca2+]i relationship at peak force did not correspond to the steady state measurements after the application of 5 mM 2,3-butanedione monoxime (BDM) (to accelerate cross-bridge kinetics) or 100 microM CPA (to slow the relaxation of the [Ca2+]i transient). Therefore, we conclude that the relationship of force to [Ca2+]i during physiological twitch contractions cannot be used to predict the steady state relationship.

Publisher

Rockefeller University Press

Subject

Physiology

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3