Astrocytic glutamate transporters reduce the neuronal and physiological influence of metabotropic glutamate receptors in nucleus tractus solitarii

Author:

Martinez Diana1ORCID,Rogers Richard C.2ORCID,Hermann Gerlinda E.2ORCID,Hasser Eileen M.13ORCID,Kline David D.1ORCID

Affiliation:

1. Department of Biomedical Sciences and Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri

2. Pennington Biomedical Research Center, Baton Rouge, Louisiana

3. Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri

Abstract

Astrocytic excitatory amino acid transporters (EAATs) are critical to restraining synaptic and neuronal activity in the nucleus tractus solitarii (nTS). Relief of nTS EAAT restraint generates two opposing effects, an increase in neuronal excitability that reduces blood pressure and breathing and an attenuation in afferent [tractus solitarius (TS)]-driven excitatory postsynaptic current (EPSC) amplitude. Although the former is due, in part, to activation of ionotropic glutamate receptors, there remains a substantial contribution from another unidentified glutamate receptor. In addition, the mechanism(s) by which EAAT inhibition reduced TS-EPSC amplitude is unknown. Metabotropic glutamate receptors (mGluRs) differentially modulate nTS excitability. Activation of group I mGluRs on nTS neuron somas leads to depolarization, whereas group II/III mGluRs on sensory afferents decrease TS-EPSC amplitude. Thus we hypothesize that EAATs control postsynaptic excitability and TS-EPSC amplitude via restraint of mGluR activation. To test this hypothesis, we used in vivo recording, brain slice electrophysiology, and imaging of glutamate release and TS-afferent Ca2+. Results show that EAAT blockade in the nTS with (3 S)-3-[[3-[[4-(trifluoromethyl)benzoyl]amino]phenyl]methoxy]-l-aspartic acid (TFB-TBOA) induced group I mGluR-mediated depressor, bradycardic, and apneic responses that were accompanied by neuronal depolarization, elevated discharge, and increased spontaneous synaptic activity. Conversely, upon TS stimulation TFB-TBOA elevated extracellular glutamate to decrease presynaptic Ca2+ and TS-EPSC amplitude via activation of group II/III mGluRs. Together, these data suggest an important role of EAATs in restraining mGluR activation and overall cardiorespiratory function.

Funder

American Heart Association

John S. Mcllhenny Professorship

NIH

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3