Loss of Group II Metabotropic Glutamate Receptor Signaling Exacerbates Hypertension in Spontaneously Hypertensive Rats

Author:

Hsu Julia Chu-Ning,Sekizawa ShinichiORCID,Tochinai Ryota,Kuwahara Masayoshi

Abstract

High blood pressure is a major risk factor of cerebro-cardiovascular outcomes. Blood pressure is partly regulated by the autonomic nervous system and its reflex functions; therefore, we hypothesized that pharmacological intervention in the brainstem that can regulate blood pressure could be a novel therapeutic strategy to control hypertension. We infused a group II metabotropic glutamate receptor (mGluR) antagonist (LY341495, 0.40 μg/day), using a mini-osmotic pump, into the dorsal medulla oblongata in young spontaneously hypertensive rats (SHRs), as this area is adjacent to the nucleus tractus solitarius (NTS), of which the neurons are involved in baroreflex pathways with glutamatergic transmission. Blood pressure was recorded for conscious rats with the tail cuff method. A 6-week antagonist treatment from 6 to 12 weeks of age slightly but significantly increased systolic blood pressure by >30 mmHg, compared to that in SHRs without treatment. Moreover, the effect continued even 3 weeks after the treatment ended, and concurred with an increase in blood catecholamine concentration. However, heart rate variability analysis revealed that LY341495 treatment had little effect on autonomic activity. Meanwhile, mRNA expression level of mGluR subtype 2, but not subtype 3 in the brainstem was significantly enhanced by the antagonist treatment in SHRs, possibly compensating the lack of mGluR signaling. In conclusion, mGluR2 signaling in the dorsal brainstem is crucial for preventing the worsening of hypertension over a relatively long period in SHRs, through a mechanism of catecholamine secretion. This may be a specific drug target for hypertension therapy.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3