Effect of N-2-mercaptopropionyl glycine on exercise-induced cardiac adaptations

Author:

Nelson Matthew J.1,Harris M. Brennan1,Boluyt Marvin O.2,Hwang Hyun Seok2,Starnes Joseph W.13

Affiliation:

1. Department of Kinesiology and Health Education, University of Texas, Austin Texas;

2. Center for Exercise Research, Division of Kinesiology, University of Michigan, Ann Arbor, Michigan; and

3. Department of Kinesiology, University of North Carolina, Greensboro, North Carolina

Abstract

The purpose of this study was to test the hypothesis that exercise-induced cardiac adaptations would be attenuated by the free radical scavenger N-2-mercaptopropionyl glycine (MPG). Male Sprague-Dawley rats were divided into four groups ( n = 9–13 per group) for 3–4 wk: sedentary (S), S+MPG (100 mg/kg ip daily), exercised on a treadmill (E) (60 min/day, 5 days/wk, at a speed of 20 m/min up a 6° grade in a 6°C room), or E+MPG given 10 min prior to exercise. Additional rats ( n = 55) were used to determine acute exercise effects on myocardial redox state [nonprotein nonglutathione sulfhydryls (NPNGSH)] and PI3K/Akt signaling pathway activation. Compared with S, NPNGSH levels were 48% lower in E ( P < 0.05) and unchanged in E+MPG ( P > 0.05). MPG also attenuated exercise-induced activation of the signaling proteins Akt and S6. Hearts from the 4-wk groups were weighed, and cardiac function was evaluated using an isolated perfused working heart preparation. Similar increases ( P < 0.05) in both exercised groups were observed for heart weight and heart weight-to-body weight ratio. Cardiac function improved in E vs. S, as indicated by greater ( P < 0.05) external work performed (cardiac output × systolic pressure) and efficiency of external work (work/V̇o2). MPG prevented these exercise-induced functional improvements. Skeletal muscle mitochondria content increased to similar levels in E and E+MPG. This study provides evidence that free radicals do not play an essential role in the development of exercise-induced cardiac hypertrophy; however, they appear to be involved in functional cardiac adaptations, which may be mediated through the PI3K/Akt pathway.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3