Exercise training improves metabolic response after ischemia in isolated working rat heart

Author:

Bowles D. K.1,Starnes J. W.1

Affiliation:

1. Department of Kinesiology, University of Texas at Austin 78712.

Abstract

Hearts from treadmill-trained and sedentary rats were perfused in the working heart mode. Mechanical and metabolite status was evaluated before ischemia, after 25 min of global ischemia, and after 30 min of retrograde reperfusion. After reperfusion, hearts from trained rats were found to have better recovery of contractile function, lower diastolic stiffness, greater efficiency of work, and greater extracellular calcium responsiveness than hearts from sedentary rats. Training had no significant impact on bioenergetic status before or at the end of ischemia. However, after reperfusion, both phosphocreatine and ATP were significantly higher in hearts from trained rats than from sedentary control rats. Mitochondrial function in both subsarcolemmal and intermyofibrillar subpopulations was unaffected by ischemia-reperfusion. 45Ca2+ uptake during reperfusion was significantly higher in hearts from sedentary rats than from exercise-trained rats. No differences were found in free radical production or tolerance due to training. Therefore, hearts from exercise-trained rats demonstrated an increased metabolic tolerance to ischemic-reperfusion damage, which may contribute to the improved postischemic functional recovery.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 96 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Mitochondria in Exercise Protecting Myocardium From Ischemia-reperfusion Injury;PROG BIOCHEM BIOPHYS;2024

2. Comment l’activité physique cible la mitochondrie pour protéger le cœur ?;Archives des Maladies du Coeur et des Vaisseaux - Pratique;2024-02

3. Myokine Musclin Is Critical for Exercise-Induced Cardiac Conditioning;International Journal of Molecular Sciences;2023-03-30

4. Influence of Exercise on Cardiac Metabolism and Resilience;Physiology in Health and Disease;2022

5. Exercise-Mediated Autophagy in Cardiovascular Diseases;Exercise, Autophagy and Chronic Diseases;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3