Muscle metabolic responses to exercise above and below the “critical power” assessed using31P-MRS

Author:

Jones Andrew M.,Wilkerson Daryl P.,DiMenna Fred,Fulford Jonathan,Poole David C.

Abstract

We tested the hypothesis that the asymptote of the hyperbolic relationship between work rate and time to exhaustion during muscular exercise, the “critical power” (CP), represents the highest constant work rate that can be sustained without a progressive loss of homeostasis [as assessed using31P magnetic resonance spectroscopy (MRS) measurements of muscle metabolites]. Six healthy male subjects initially completed single-leg knee-extension exercise at three to four different constant work rates to the limit of tolerance (range 3–18 min) for estimation of the CP (mean ± SD, 20 ± 2 W). Subsequently, the subjects exercised at work rates 10% below CP (<CP) for 20 min and 10% above CP (>CP) for as long as possible, while the metabolic responses in the contracting quadriceps muscle, i.e., phosphorylcreatine concentration ([PCr]), Piconcentration ([Pi]), and pH, were estimated using31P-MRS. All subjects completed 20 min of <CP exercise without duress, whereas the limit of tolerance during >CP exercise was 14.7 ± 7.1 min. During <CP exercise, stable values for [PCr], [Pi], and pH were attained within 3 min after the onset of exercise, and there were no further significant changes in these variables (end-exercise values = 68 ± 11% of baseline [PCr], 314 ± 216% of baseline [Pi], and pH 7.01 ± 0.03). During >CP exercise, however, [PCr] continued to fall to the point of exhaustion and [Pi] and pH changed precipitously to values that are typically observed at the termination of high-intensity exhaustive exercise (end-exercise values = 26 ± 16% of baseline [PCr], 564 ± 167% of baseline [Pi], and pH 6.87 ± 0.10, all P < 0.05 vs. <CP exercise). These data support the hypothesis that the CP represents the highest constant work rate that can be sustained without a progressive depletion of muscle high-energy phosphates and a rapid accumulation of metabolites (i.e., H+concentration and [Pi]), which have been associated with the fatigue process.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 382 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3