Distribution of aquaporins in the colon of Octodon degus, a South American desert rodent

Author:

Gallardo Pedro1,Olea Nancy1,Sepúlveda Francisco V.12

Affiliation:

1. Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Casilla 70058, Santiago; and

2. Centro de Estudios Cientı́ficos, Casille 1469, Valdivia, Chile

Abstract

Octodon degus is a desert rodent of northern Chile, adapted to survive with a limited supply of water. This rodent has a high degree of fecal dehydration, related to colon water absorption. With the hypothesis that aquaporins (AQPs) might be present in the colon epithelium of O. degus and involved in fluid absorption, we studied colon water absorption in vivo and the distribution of AQPs and Na+ transporters by immunocytochemistry. AQP-1 was found in apical and basolateral membranes of surface-absorptive and crypt epithelial cells. AQP-8 was found in the cytoplasm of enterocytes of surface colon. AQP-3 immunolabeling, on the other hand, was absent from the epithelium but present in a subepithelial fibroblast layer, pericryptal cells, and muscularis mucosae. The hydration state did not modify the amount of immunostaining for any of the AQPs. Colon water absorption was markedly decreased by the mercurial agent p-chloromercuribenzenesulfonic acid and was not affected by water deprivation. The NHE3 isoform of Na+/H+exchanger and α-1 subunit of the Na+-K+-ATPase were found in apical and basolateral membranes of surface-absorptive cells, respectively. These results suggest that colon water absorption is mostly transcellular and mediated by water channels like AQP-1. Apical Na+/H+ exchanger and basolateral Na+-K+-ATPase in surface cells could be part of the Na+ absorption pathway. It is hypothesized that this transport is necessary to provide an osmotic gradient for water absorption. The roles of AQP-8 and AQP-3 in water absorption remain to be established.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3