Ion transport in gills of the euryhaline fish Gillichthys mirabilis is facilitated by a phosphocreatine circuit

Author:

Kultz D.1,Somero G. N.1

Affiliation:

1. Department of Zoology, Oregon State University, Corvallis 97331-2914,USA.

Abstract

The function of creatine kinase (CK) isozymes in energy metabolism and the short-term regulation of active ion transport in gills of the euryhaline teleost Gillichthys mirabilis was investigated. After a transfer of fish from regular seawater [36 parts/thousand (ppt)] to hypersaline water (60 ppt), the plasma osmolality increased significantly from 361.0 +/- 5.2 to 434.2 +/- 20.6 mosmol/kgH2O within 2 h and was regulated down to 391.8 +/- 11.3 mosmol/kgH2O within 12 h. Although the ATP concentration in the gill tissue remained unchanged, the creatine concentration increased significantly from 17.3 +/- 3.2 to 37.6 +/- 5.9 nmol/mg protein within 2 h after the salinity change. CK and Na(+)-K(+)-adenosinetriphosphatase-(Na(+)-K(+)-ATPase) activities were unchanged 48 h after transfer. Independent of salinity, the activities of CK were three to seven times those of the Na(+)-K(+)-ATPase, and the creatine concentration in the gill was at least one order of magnitude higher than the ATP concentration. The occurrence of muscle-type CK (CK-M), brain-type CK, and mitochondrial CK was demonstrated. CK-M was predominant in gills (59 +/- 7.1% of total CK activity). Evidence for a direct functional coupling between CK and Na(+)-K(+)-ATPase was obtained with permeabilized gill cells, by using the CK inhibitor iodoacetamide, which abolishes the competitive channeling of ADP from the external pyruvate kinase reaction to the endogeneous CK reaction in a coupled in situ Na(+)-K(+)-ATPase assay. Our results show the significance and the central regulatory role for energy metabolism and adaptive ionoregulation of a phosphocreatine-CK circuit in situations of high and fluctuating energy demands for euryhaline fishes.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3