CRF and urocortin 3 protect the heart from hypoxia/reoxygenation-induced apoptosis in zebrafish

Author:

Williams Tegan A.1,Bergstrome Jillian C.1,Scott Juliana1,Bernier Nicholas J.1

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada

Abstract

Fish routinely experience environmental hypoxia and have evolved various strategies to tolerate this challenge. Given the key role of the CRF system in coordinating the response to stressors and its cardioprotective actions against ischemia in mammals, we sought to characterize the cardiac CRF system in zebrafish and its role in hypoxia tolerance. We established that all genes of the CRF system, the ligands CRFa, CRFb, urotensin 1 (UTS1), and urocortin 3 (UCN3); the two receptor subtypes (CRFR1 and CRFR2); and the binding protein (CRFBP) are expressed in the heart of zebrafish: crfr1 > crfr2 = crfbp > crfa > ucn3 > crfb > uts1. In vivo, exposure to 5% O2 saturation for 15 min and 90 min of recovery resulted in four- to five-fold increases in whole heart crfb and ucn3 mRNA levels but did not affect the gene expression of other CRF system components. In vitro, as assessed by monitoring caspase 3 activity and the number of terminal deoxynucleotidyl transferase dUTP nick-end labeling-positive cells, pretreatment of excised whole hearts with CRF or UCN3 for 30 min prevented the increase in apoptosis associated with exposure to 1% O2 saturation for 30 min with a 24-h recovery. Lastly, the addition of the nonselective CRF receptor antagonist αh-CRF(9–41) prevented the cytoprotective effects of CRF. We show that the CRF system is expressed in fish heart, is upregulated by hypoxia, and is cytoprotective. These findings identify a novel role for the CRF system in fish and a new strategy to tolerate hypoxia.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3