Evidence for a plasma-accessible carbonic anhydrase in the lumen of salmon heart that may enhance oxygen delivery to the myocardium

Author:

Alderman Sarah L.1,Harter Till S.2,Wilson Jonathan M.3,Supuran Claudiu T.4,Farrell Anthony P.25,Brauner Colin J.2

Affiliation:

1. Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada N1G 2W1

2. Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

3. Department of Biology, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L 3C5

4. Neurofarba Department, Università degli Studi di Firenze, 50019 Florence, Italy

5. Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4

Abstract

ABSTRACT Oxygen supply to the heart of most teleosts, including salmonids, relies in part or in whole on oxygen-depleted venous blood. Given that plasma-accessible carbonic anhydrase (CA) in red muscle of rainbow trout has recently been shown to facilitate oxygen unloading from arterial blood under certain physiological conditions, we tested the hypothesis that plasma-accessible CA is present in the lumen of coho salmon (Oncorhynchus kisutch) hearts, and may therefore assist in the luminal oxygen supply to the spongy myocardium, which has no coronary circulation. We demonstrate a widespread distribution of CA throughout the heart chambers, including lumen-facing cells in the atrium, and confirm that the membrane-bound isoform ca4 is expressed in the atrium and ventricle of the heart. Further, we confirm that CA catalytic activity is available to blood in the atrial lumen using a modified electrometric ΔpH assay in intact atria in combination with either a membrane-impermeable CA inhibitor or specific cleavage of the Ca4 membrane anchor. Combined, these results support our hypothesis of the presence of an enhanced oxygen delivery system in the lumen of a salmonid heart, which could help support oxygen delivery when the oxygen content of venous blood becomes greatly reduced, such as after burst exercise and during environmental hypoxia.

Funder

Natural Sciences and Engineering Research Council (NSERC) Discovery Grant

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3