Affiliation:
1. Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri
Abstract
Serotonergic (5-hydroxytryptamine, 5-HT) neurons of the area postrema (AP) represent one neuronal phenotype implicated in the regulation of salt appetite. Tryptophan hydroxylase (Tryp-OH, synthetic enzyme-producing 5-HT) immunoreactive neurons in the AP of rats become c-Fos-activated following conditions in which plasma sodium levels are elevated; these include intraperitoneal injections of hypertonic saline and sodium repletion. Non-Tryp-OH neurons also became c-Fos-activated. Sodium depletion, which induced an increase in plasma osmolality but caused no significant change in the plasma sodium concentration, had no effect on the c-Fos activity in the AP. Epithelial sodium channels are expressed in the Tryp-OH-immunoreactive AP neurons, possibly functioning in the detection of changes in plasma sodium levels. Since little is known about the neural circuitry of these neurons, we tested whether the AP contributes to a central pathway that innervates the reward center of the brain. Stereotaxic injections of pseudorabies virus were made in the nucleus accumbens (NAc), and after 4 days, this viral tracer produced retrograde transneuronal labeling in the Tryp-OH and non-Tryp-OH AP neurons. Both sets of neurons innervate the NAc via a multisynaptic pathway. Besides sensory information regarding plasma sodium levels, the AP→NAc pathway may also transmit other types of chemosensory information, such as those related to metabolic functions, food intake, and immune system to the subcortical structures of the reward system. Because these subcortical regions ultimately project to the medial prefrontal cortex, different types of chemical signals from visceral systems may influence affective functions.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献