Affiliation:
1. Muscle Metabolism Laboratory, Department of Physiology, University of Arizona College of Medicine, Tucson, Arizona 85721–0093; and
2. Hypertension and Diabetes Research Unit, Max-Grundig-Klinik, 77815 Bühl, Germany
Abstract
The nonapeptide bradykinin (BK) has been implicated as the mediator of the beneficial effect of angiotensin-converting enzyme inhibitors on insulin-stimulated glucose transport in insulin-resistant skeletal muscle. In the present study, the effects of chronic in vivo BK treatment of obese Zucker ( fa/ fa) rats, a model of glucose intolerance and severe insulin resistance, on whole body glucose tolerance and skeletal muscle glucose transport activity stimulated by insulin or contractions were investigated. BK was administered subcutaneously (twice daily at 40 μg/kg body wt) for 14 consecutive days. Compared with a saline-treated obese group, the BK-treated obese animals had significantly ( P < 0.05) lower fasting plasma levels of insulin (20%) and free fatty acids (26%), whereas plasma glucose was not different. During a 1 g/kg body wt oral glucose tolerance test, the glucose and insulin responses [incremental areas under the curve (AUC)] were 21 and 29% lower, respectively, in the BK-treated obese group. The glucose-insulin index, the product of the glucose and insulin AUCs and an indirect index of in vivo insulin action, was 52% lower in the BK-treated obese group compared with the obese control group. Moreover, 2-deoxyglucose uptake in the isolated epitrochlearis muscle stimulated by a maximally effective dose of insulin (2 mU/ml) was 52% greater in the BK-treated obese group. Contraction-stimulated (10 tetani) 2-deoxyglucose uptake was also enhanced by 35% as a result of the BK treatment. In conclusion, these findings indicate that in the severely insulin-resistant obese Zucker rat, chronic in vivo treatment with BK can significantly improve whole body glucose tolerance, possibly as a result of the enhanced insulin-stimulated skeletal muscle glucose transport activity observed in these animals.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献