Affiliation:
1. Departments of Exercise Science and
2. Biological Chemistry, University of California Davis, Davis, 95616; and
3. General Electric Medical Systems, Inc., Fremont, California 94539
Abstract
The present study evaluated whether intracellular partial pressure of O2 ([Formula: see text]) modulates the muscle O2 uptake (V˙o 2) as exercise intensity increased. Indirect calorimetry followedV˙o 2, whereas nuclear magnetic resonance (NMR) monitored the high-energy phosphate levels, intracellular pH, and intracellular[Formula: see text] in the gastrocnemius muscle of four untrained subjects at rest, during plantar flexion exercise with a constant load at a repetition rate of 0.75, 0.92, and 1.17 Hz, and during postexercise recovery.V˙o 2 increased linearly with exercise intensity and peaked at 1.17 Hz (15.1 ± 0.37 watts), when the subjects could maintain the exercise for only 3 min.V˙o 2 reached a peak value of 13.0 ± 1.59 ml O2 ⋅ min−1 ⋅ 100 ml leg volume−1. The31P spectra indicated that phosphocreatine decreased to 32% of its resting value, whereas intracellular pH decreased linearly with power output, reaching 6.86. Muscle ATP concentration, however, remained constant throughout the exercise protocol. The 1H NMR deoxymyoglobin signal, reflecting the cellular[Formula: see text], decreased in proportion to increments in power output andV˙o 2. At the highest exercise intensity and peakV˙o 2, myoglobin was ∼50% desaturated. These findings, taken together, suggest that the O2 gradient from hemoglobin to the mitochondria can modulate the O2flux to meet the increasedV˙o 2 in exercising muscle, but declining cellular [Formula: see text]during enhanced mitochondrial respiration suggests that O2 availability is not limitingV˙o 2 during exercise.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献