Computational Analysis Reveals Unique Binding Patterns of Oxygenated and Deoxygenated Myoglobin to the Outer Mitochondrial Membrane

Author:

Anishkin Andriy1,Adepu Kiran Kumar23ORCID,Bhandari Dipendra2,Adams Sean H.45,Chintapalli Sree V.23ORCID

Affiliation:

1. Department of Biology, University of Maryland, College Park, MD 20742, USA

2. Arkansas Children’s Nutrition Center, Little Rock, AR 72202, USA

3. Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

4. Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA 95616, USA

5. Center for Alimentary and Metabolic Science, University of California Davis, Sacramento, CA 95616, USA

Abstract

Myoglobin (Mb) interaction with the outer mitochondrial membrane (OMM) promotes oxygen (O2) release. However, comprehensive molecular details on specific contact regions of the OMM with oxygenated (oxy-) and deoxygenated (deoxy-)Mb are missing. We used molecular dynamics (MD) simulations to explore the interaction of oxy- and deoxy-Mb with the membrane lipids of the OMM in two lipid compositions: (a) a typical whole membrane on average, and (b) specifically the cardiolipin-enriched cristae region (contact site). Unrestrained relaxations showed that on average, both the oxy- and deoxy-Mb established more stable contacts with the lipids typical of the cristae contact site, then with those of the average OMM. However, in steered detachment simulations, deoxy-Mb clung more tightly to the average OMM, and oxy-Mb strongly preferred the contact sites of the OMM. The MD simulation analysis further indicated that a non-specific binding, mediated by local electrostatic interactions, existed between charged or polar groups of Mb and the membrane, for stable interaction. To the best of our knowledge, this is the first computational study providing the molecular details of the direct Mb–mitochondria interaction that assisted in distinguishing the preferred localization of oxy- and deoxy-Mb on the OMM. Our findings support the existing experimental evidence on Mb–mitochondrial association and shed more insights on Mb-mediated O2 transport for cellular bioenergetics.

Funder

USDA-ARS project

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3