Renal responses of trout to chronic respiratory and metabolic acidoses and metabolic alkalosis

Author:

Wood Chris M.12,Milligan C. Louise3,Walsh Patrick J.2

Affiliation:

1. Department of Biology, McMaster University, Hamilton, L8S 4K1;

2. Division of Marine Biology and Fisheries, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149

3. Department of Zoology, University of Western Ontario, London, Ontario, Canada N6A 5B7; and

Abstract

Exposure to hyperoxia (500–600 torr) or low pH (4.5) for 72 h or NaHCO3 infusion for 48 h were used to create chronic respiratory (RA) or metabolic acidosis (MA) or metabolic alkalosis in freshwater rainbow trout. During alkalosis, urine pH increased, and [titratable acidity (TA) −[Formula: see text]] and net H+ excretion became negative (net base excretion) with unchanged [Formula: see text] efflux. During RA, urine pH did not change, but net H+ excretion increased as a result of a modest rise in [Formula: see text] and substantial elevation in [TA −[Formula: see text]] efflux accompanied by a large increase in inorganic phosphate excretion. However, during MA, urine pH fell, and net H+excretion was 3.3-fold greater than during RA, reflecting a similar increase in [TA −[Formula: see text]] and a smaller elevation in phosphate but a sevenfold greater increase in[Formula: see text] efflux. In urine samples of the same pH, [TA − [Formula: see text]] was greater during RA (reflecting phosphate secretion), and[Formula: see text] was greater during MA (reflecting renal ammoniagenesis). Renal activities of potential ammoniagenic enzymes (phosphate-dependent glutaminase, glutamate dehydrogenase, α-ketoglutarate dehydrogenase, alanine aminotransferase, phospho enolpyruvate carboxykinase) and plasma levels of cortisol, phosphate, ammonia, and most amino acids (including glutamine and alanine) increased during MA but not during RA, when only alanine aminotransferase increased. The differential responses to RA vs. MA parallel those in mammals; in fish they may be keyed to activation of phosphate secretion by RA and cortisol mobilization by MA.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3