Integrated organismal responses induced by projected levels of CO2 and temperature exposures in the early life stages of lake sturgeon

Author:

Belding Luke D.1,Thorstensen Matt J.1ORCID,Quijada‐Rodriguez Alex R.1,Bugg William S.12,Yoon Gwangseok R.13,Loeppky Alison R.4,Allen Garrett J. P.5,Schoen Alexandra N.16,Earhart Madison L.7,Brandt Catherine8,Ali Jennifer L.9,Weihrauch Dirk1,Jeffries Kenneth M.1ORCID,Anderson W. Gary1

Affiliation:

1. Department of Biological Sciences University of Manitoba Winnipeg Manitoba Canada

2. Pacific Salmon Foundation Vancouver British Columbia Canada

3. Department of Biological Sciences University of Toronto Scarborough Toronto Ontario Canada

4. Ecology and Environmental Impact WSP Canada Inc. Winnipeg Manitoba Canada

5. Institute of Cellular and Organismic Biology Academia Sinica Taipei Taiwan

6. Department of Biology University of Winnipeg Winnipeg Manitoba Canada

7. Department of Zoology University of British Columbia Vancouver British Columbia Canada

8. Victoria Gold Corp. Vancouver British Columbia Canada

9. National Microbiology Laboratory Public Health Agency of Canada Winnipeg Manitoba Canada

Abstract

AbstractAtmospheric CO2 and temperature are rising concurrently, and may have profound impacts on the transcriptional, physiological and behavioural responses of aquatic organisms. Further, spring snowmelt may cause transient increases of pCO2 in many freshwater systems. We examined the behavioural, physiological and transcriptomic responses of an ancient fish, the lake sturgeon (Acipenser fulvescens) to projected levels of warming and pCO2 during its most vulnerable period of life, the first year. Specifically, larval fish were raised in either low (16°C) or high (22°C) temperature, and/or low (1000 μatm) or high (2500 μatm) pCO2 in a crossed experimental design over approximately 8 months. Following overwintering, lake sturgeon were exposed to a transient increase in pCO2 of 10,000 μatm, simulating a spring melt based on data in freshwater systems. Transcriptional analyses revealed potential connections to otolith formation and reduced growth in fish exposed to high pCO2 and temperature in combination. Network analyses of differential gene expression revealed different biological processes among the different treatments on the edges of transcriptional networks. Na+/K+‐ATPase activity increased in fish not exposed to elevated pCO2 during development, and mRNA abundance of the β subunit was most strongly predictive of enzyme activity. Behavioural assays revealed a decrease in total activity following an acute CO2 exposure. These results demonstrate compensatory and compounding mechanisms of pCO2 and warming dependent on developmental conditions in lake sturgeon. Conserved elements of the cellular stress response across all organisms provide key information for how other freshwater organisms may respond to future climate change.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3