Differential effects of water and saline intake on water deprivation-induced c-Fos staining in the rat

Author:

Gottlieb Helmut B.,Ji Lisa L.,Jones Heath,Penny Maurice L.,Fleming Tiffany,Cunningham J. Thomas

Abstract

We studied c-Fos staining in adult male rats after 48 h of water deprivation and after 46 h of water deprivation with 2 h of access to water or physiological saline. Controls were allowed ad libitum access to water and physiological saline. For immunocytochemistry, anesthetized rats were perfused with a commercially available antibody for c-Fos. Dehydration significantly increased plasma vasopressin (AVP), osmolality, plasma renin activity (PRA), hematocrit, and sodium concentration and decreased urinary volume. Fos staining was significantly increased in the median preoptic nucleus, organum vasculosum of the lamina terminalis, supraoptic nucleus (SON), and magnocellular and parvocellular paraventricular nucleus (PVN), as well as the area postrema, nucleus of the solitary tract (NTS), and rostral ventrolateral medulla (RVL). Rehydration with water significantly decreased AVP levels and Fos staining in the SON, PVN, and RVL and significantly increased Fos expression in the perinuclear zone of the SON, NTS, and parabrachial nucleus. Rehydration with water was associated with decreased urinary sodium concentration and hypotonicity, and hematocrit and PRA were comparable to levels seen after dehydration. After rehydration with saline, plasma osmolality, hematocrit, and PRA were not different from control, but plasma AVP and urinary sodium concentration were increased. In the SON, Fos staining was significantly increased, with a great percentage of the Fos cells also stained for oxytocin compared with water deprivation. Changes in Fos staining were also observed in the NTS, RVL, parabrachial nucleus, and PVN. Rehydration with water or saline produces differential effects on plasma AVP, Fos staining, and sodium concentration.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3