Role of β-adrenergic receptors in the hyperphagic and hypermetabolic responses to dietary methionine restriction

Author:

Plaisance Eric P.1,Henagan Tara M.1,Echlin Haley1,Boudreau Anik1,Hill Kasey L.1,Lenard Natalie R.1,Hasek Barbara E.1,Orentreich Norman2,Gettys Thomas W.1

Affiliation:

1. Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, Louisiana; and

2. Orentreich Foundation for the Advancement of Science, Biomedical Research Station, Cold Spring-on-Hudson, New York

Abstract

Dietary methionine restriction (MR) limits fat deposition and decreases plasma leptin, while increasing food consumption, total energy expenditure (EE), plasma adiponectin, and expression of uncoupling protein 1 (UCP1) in brown and white adipose tissue (BAT and WAT). β-adrenergic receptors (β-AR) serve as conduits for sympathetic input to adipose tissue, but their role in mediating the effects of MR on energy homeostasis is unclear. Energy intake, weight, and adiposity were modestly higher in β3-AR−/−mice on the Control diet compared with wild-type (WT) mice, but the hyperphagic response to the MR diet and the reduction in fat deposition did not differ between the genotypes. The absence of β3-ARs also did not diminish the ability of MR to increase total EE and plasma adiponectin or decrease leptin mRNA, but it did block the MR-dependent increase in UCP1 mRNA in BAT but not WAT. In a further study, propranolol was used to antagonize remaining β-adrenergic input (β1- and β2-ARs) in β3-AR−/−mice, and this treatment blocked >50% of the MR-induced increase in total EE and UCP1 induction in both BAT and WAT. We conclude that signaling through β-adrenergic receptors is a component of the mechanism used by dietary MR to increase EE, and that β1- and β2-ARs are able to substitute for β3-ARs in mediating the effect of dietary MR on EE. These findings are consistent with the involvement of both UCP1-dependent and -independent mechanisms in the physiological responses affecting energy balance that are produced by dietary MR.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3