Contractile and connective tissue protein content of human skeletal muscle: effects of 35 and 90 days of simulated microgravity and exercise countermeasures

Author:

Haus Jacob M.,Carrithers John A.,Carroll Chad C.,Tesch Per A.,Trappe Todd A.

Abstract

We examined the effects of 35 and 90 days of simulated microgravity with or without resistance-exercise (RE) countermeasures on the content of the general skeletal muscle protein fractions (mixed, sarcoplasmic, and myofibrillar) and specific proteins that are critical for muscle function (myosin, actin, and collagen). Subjects from two studies, using either unilateral lower limb suspension (ULLS) or bed rest (BR), comprised four separate groups: 35 days ULLS ( n =11), 35 days ULLS+RE ( n = 10), 90 days BR ( n = 9), and 90 days BR+RE ( n = 8). RE consisted of four sets of seven maximal concentric and eccentric repetitions of the quadriceps femoris muscles that were performed 2 or 3 times per week. Pre- and post-simulated weightlessness muscle biopsies were analyzed from the vastus lateralis of all groups and the soleus of the 35-day ULLS and 90-day BR groups. The general protein fractions and the specific proteins myosin, actin, and collagen of the vastus lateralis were unchanged ( P > 0.05) in both control and countermeasures groups over 35 and 90 days, despite large changes in quadriceps femoris muscle volume (35 days ULLS: −9%, 35 days ULLS+RE: +8%; and 90 days BR: −18%, 90 days BR+RE: −1%). The soleus demonstrated a decrease in mixed (35 days ULLS: −12%, P = 0.0001; 90 days BR: −12%, P = 0.004) and myofibrillar (35 days ULLS: −12%, P = 0.009; 90 days BR: −8%, P = 0.04) protein, along with large changes in triceps surae muscle volume (35 days ULLS: −11%; 90 days BR: −29%). Despite the loss of quadriceps femoris muscle volume or preservation with RE countermeasures during simulated microgravity, the quadriceps femoris muscles are able to maintain the concentrations of the general protein pools and the main contractile and connective tissue elements. Soleus muscle protein composition appears to be disproportionately altered during long-duration simulated weightlessness.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3