Characterisation of the Muscle Protein Synthetic Response to Resistance Exercise in Healthy Adults: A Systematic Review and Exploratory Meta-Analysis

Author:

Davies Robert W.1ORCID,Lynch Arthur E.2ORCID,Kumar Uttam2ORCID,Jakeman Philip M.23ORCID

Affiliation:

1. Chester Medical School, University of Chester, Shrewsbury, UK

2. Department of Physical Education and Sport Sciences, University of Limerick, Limerick, Ireland

3. Health Research Institute, University of Limerick, Limerick, Ireland

Abstract

Background and Objective. The rate of skeletal muscle protein synthesis (MPS) is the principal driving force underpinning the muscular adaptive response to resistance exercise (RE). This study aims to consolidate the literature, characterise MPS response to RE, and assess the impact of key covariates. Methods. Five electronic databases (PubMed (Medline), Web of Science, Embase, Sport Discus, and Cochrane Library) were searched for controlled trials that assessed the MPS response to RE in healthy, adult humans, postabsorptive state. Individual study and random-effects meta-analysis arewere used to inform the effects of RE and covariates on MPS. Results from 79 controlled trials with 237 participants were analysed. Results. Analysis of the pooled effects revealed robust increases in MPS following RE (weighted mean difference (WMD): 0.032% h−1, 95% CI: [0.024, 0.041] % h−1, I2 = 92%, k = 37, P<0.001). However, the magnitude of the increase in MPS was lower in older adults (>50 y: WMD: 0.015% h−1, 95% CI: [0.007, 0.022] % h−1, I2 = 76%, k = 12, P=0.002) compared to younger adults (<35 y: WMD: 0.041% h−1, 95% CI: [0.030, 0.052] % h−1, I2 = 88%, k = 25, P<0.001). Individual studies have reported that the temporal proximity of the RE, muscle group, muscle protein fraction, RE training experience, and the loading parameters of the RE (i.e., intensity, workload, and effort) appeared to affect the MPS response to RE, whereas sex or type of muscle contraction does not. Conclusion. A single bout of RE can sustain measurable increases in postabsorptive MPS soon after RE cessation and up to 48 h post-RE. However, there is substantial heterogeneity in the magnitude and time course of the MPS response between trials, which appears to be influenced by participants’ age and/or the loading parameters of the RE itself.

Funder

Marigot Ltd

Publisher

Hindawi Limited

Reference104 articles.

1. Molecular basis of skeletal muscle plasticity-from gene to form and function;M. Flück;Reviews of Physiology, Biochemistry & Pharmacology,2003

2. Muscle protein synthesis in response to nutrition and exercise

3. Making sense of muscle protein synthesis: a focus on muscle growth during resistance training;O. C. Witard;International Journal of Sport Nutrition and Exercise Metabolism,2021

4. Changes in human muscle protein synthesis after resistance exercise

5. Differential Stimulation of Post-Exercise Myofibrillar Protein Synthesis in Humans Following Isonitrogenous, Isocaloric Pre-Exercise Feeding

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3