Acute inhibition of the hypothalamic paraventricular nucleus decreases renal sympathetic nerve activity and arterial blood pressure in water-deprived rats

Author:

Stocker Sean D.1,Keith Kimberly J.1,Toney Glenn M.1

Affiliation:

1. Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78239

Abstract

The present study was performed to determine whether sympathetic outflow and arterial blood pressure in water-deprived rats are dependent on the ongoing neuronal activity of the hypothalamic paraventricular nucleus (PVN). Renal sympathetic nerve activity (RSNA), mean arterial blood pressure (MAP), and heart rate were recorded in urethane-α-chloralose-anesthetized rats that were deprived of water but not food for 48 h before experiments. Acute inhibition of the PVN by bilateral microinjection of the GABAA agonist muscimol (100 pmol/side) significantly decreased RSNA in water-deprived rats (-26.7 ± 4.7%, n = 7) but was without effect in control rats (1.3 ± 6.3%, n = 7). Similarly, injection of muscimol produced a greater decrease in MAP in water-deprived rats than in control rats (-46 ± 3 vs. -16 ± 3 mmHg, respectively), although baseline MAP was not different between groups (105 ± 4 vs. 107 ± 4 mmHg, respectively). Neither bilateral microinjection of isotonic saline vehicle (100 nl/side) into the PVN nor muscimol (100 pmol/side) outside the PVN altered RSNA or MAP in either group. In addition, ganglionic blockade with hexamethonium (30 mg/kg iv) significantly decreased MAP in both groups; however, the decrease in MAP was significantly greater in water-deprived rats than in control rats (62 ± 2 vs. 48 ± 2 mmHg, respectively). Collectively, these findings suggest that sympathetic outflow contributes more to the maintenance of blood pressure in the water-deprived rat, and this depends, at least partly, on the ongoing activity of PVN neurons.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3