Inhibition of the Hypothalamic Paraventricular Nucleus in Spontaneously Hypertensive Rats Dramatically Reduces Sympathetic Vasomotor Tone

Author:

Allen Andrew M.1

Affiliation:

1. From The Howard Florey Institute, The University of Melbourne, Victoria, Australia.

Abstract

Experimental evidence indicates that the hypothalamic paraventricular nucleus modulates sympathetic vasomotor tone and blood pressure and that this modulation is altered in some cardiovascular diseases. This study tested the hypothesis that this nucleus exerts a more significant tonic excitatory modulation of basal sympathetic vasomotor activity in spontaneously hypertensive rats. In anesthetized, artificially-ventilated rats, bilateral microinjections of the GABA A receptor agonist, muscimol (1 to 1.5 nmoles per side), into the paraventricular nucleus produced a depressor and sympathoinhibitory response that did not recover. When compared with normotensive rats, this response was more marked in spontaneously hypertensive rats, where lumbar sympathetic nerve discharge was reduced by 75±3% and mean arterial pressure fell from 119±7 mm Hg to 58±3 mm Hg. Blockade of excitatory and inhibitory amino acid receptors in the rostral ventrolateral medulla significantly attenuated this response. Microinjections of small volumes (<20 nL) of GABA were used to localize precisely the responsive region of the paraventricular nucleus. Unilateral injections of GABA into the dorsomedial cap of the paraventricular nucleus induced a brisk depressor (decrease of 42±4 mm Hg), sympathoinhibitory (decrease by 72±2%), and bradycardic (decrease of 77±16 bpm) response. The mechanisms underlying the sympathoinhibition after inactivation of the paraventricular nucleus are not elucidated, but evidence discussed suggests the involvement of a supracollicular sympathoinhibitory pathway. The results presented demonstrate that the paraventricular nucleus exerts a powerful, tonic effect on the control of sympathetic vasomotor tone under basal conditions in anesthetized rats and that this is enhanced in spontaneously hypertensive rats.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Internal Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3