Short-term potentiation of ventilation after different levels of hypoxia

Author:

Menendez Astryd A.1,Nuckton Thomas J.1,Torres José E.1,Gozal David12

Affiliation:

1. Constance S. Kaufman Pulmonary Research Laboratory, Departments ofPediatrics and

2. Physiology, Tulane University School of Medicine, New Orleans, Louisiana 70112

Abstract

Short-term potentiation of ventilation (VSTP) may be observed in healthy subjects on sudden termination of an hypoxic stimulus. We hypothesized that the level of hypoxia preceding normoxia would modify the duration and magnitude of the ensuing ventilatory decay. Ten healthy adults were studied on two different occasions, during which they were randomly exposed to isocapnic 6 or 10% O2for 60 s and then switched to an isocapnic normoxic gas mixture. Both hypoxic gases induced significant ventilatory responses, and mean peak minute ventilation before the isocapnic normoxic switch was higher in 6% O2( P < 0.001). The fast time constant of the two-exponential equation representing the best fit for ventilatory decay was unaffected by the magnitude of the hypoxic stimulus. However, the slow time constant, which is considered to represent VSTP, was markedly prolonged in 6% compared with 10% O2 [106.7 ± 11.3 vs. 38.2 ± 6.1 (SD) s, respectively; P< 0.0001]. This result indicates that VSTP is stimulus dependent. We conclude that the magnitude of hypoxia preceding a normoxic transient modifies VSTP characteristics. We speculate that the interdependence function of ventilatory stimulus and short-term potentiation is crucial for preservation of system stability during transitions from high to low ventilatory drives.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3