After-discharge in the upper airway muscle genioglossus following brief hypoxia

Author:

Avraam Joanne12,Dawson Andrew1,Feast Nicole1,Fan Feiven Lee1,Fridgant Monika D1,Kay Amanda1,Koay Zi Yi1,Jia Pingdong1,Greig Rachel1,Thornton Therese1,Nicholas Christian L12ORCID,O’Donoghue Fergal J23,Trinder John1,Jordan Amy S12ORCID

Affiliation:

1. Melbourne School of Psychological Sciences, University of Melbourne, Melbourne, Australia

2. Department of Respiratory and Sleep Medicine and Institute for Breathing and Sleep, Austin Health, Heidelberg, Victoria, Australia

3. Faculty of Medicine, University of Melbourne, Parkville, Victoria, Australia

Abstract

Abstract Study Objectives Genioglossus (GG) after-discharge is thought to protect against pharyngeal collapse by minimizing periods of low upper airway muscle activity. How GG after-discharge occurs and which single motor units (SMUs) are responsible for the phenomenon are unknown. The aim of this study was to investigate genioglossal after-discharge. Methods During wakefulness, after-discharge was elicited 8–12 times in healthy individuals with brief isocapnic hypoxia (45–60 s of 10% O2 in N2) terminated by a single breath of 100% O2. GG SMUs were designated as firing solely, or at increased rate, during inspiration (Inspiratory phasic [IP] and inspiratory tonic [IT], respectively); solely, or at increased rate, during expiration (Expiratory phasic [EP] or expiratory tonic [ET], respectively) or firing constantly without respiratory modulation (Tonic). SMUs were quantified at baseline, the end of hypoxia, the hyperoxic breath, and the following eight normoxic breaths. Results A total of 210 SMUs were identified in 17 participants. GG muscle activity was elevated above baseline for seven breaths after hyperoxia (p < 0.001), indicating a strong after-discharge effect. After-discharge occurred due to persistent firing of IP and IT units that were recruited during hypoxia, with minimal changes in ET, EP, or Tonic SMUs. The firing frequency of units that were already active changed minimally during hypoxia or the afterdischarge period (p > 0.05). Conclusion That genioglossal after-discharge is almost entirely due to persistent firing of previously silent inspiratory SMUs provides insight into the mechanisms responsible for the phenomenon and supports the hypothesis that the inspiratory and expiratory/tonic motor units within the muscle have idiosyncratic functions.

Funder

Australian Research Council

Publisher

Oxford University Press (OUP)

Subject

Physiology (medical),Clinical Neurology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3