Affiliation:
1. Department of Electrical Engineering, University of the Witwatersrand, South Africa.
Abstract
The steady-state sensitivity of resistance pneumotachographs is proportional to viscosity. Dynamic characteristics of pneumotachographs, pressure transducers, and mass spectrometers are also viscosity dependent. We derive linear equations to approximate the viscosities of O2, N2, CO2, H2O, He, N2O, and Ar for temperatures between 20 and 40 degrees C by using published viscosity data and a nonlinear extrapolation equation. We verify the accuracy of the extrapolation equation by comparison with published data. Our linear equations for pure gas viscosities yield standard errors less than 0.35 microP. We also compare a nonlinear equation for calculating the viscosities of mixtures of gases with published measured viscosities of dry air, humid air, and He-O2 and N2-CO2 mixtures. The maximum difference between published and calculated values is 1.3% for 10% CO2 in N2. All other differences are less than 0.38%. For saturated humid air at 35 degrees C, a linear concentration-weighted combination of viscosities differs from our nonlinear equation by 4.9, 2.1, and 1.7% at barometric pressures of 32, 83, and 100 kPa, respectively. By use of our method, the viscosity of normal respiratory gases can be calculated to within 1% of measured values.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献