Aviation Impacts on Fuel Efficiency of a Future More Viscous Atmosphere

Author:

Ren Diandong1,Fu Rong2,Dickinson Robert E.2,Leslie Lance M.3,Wang Xingbao4

Affiliation:

1. School of Electrical Engineering, Computing and Mathematical Sciences, Curtin University, Perth, Western Australia, Australia

2. Department of Mathematical Science, University of California, Los Angeles, Los Angeles, California

3. University of Technology Sydney, Sydney, New South Wales, Australia

4. College of Oceanography, Hohai University, Nanjing, China

Abstract

AbstractAircraft cruising near the tropopause currently benefit from the highest thermal efficiency and the least viscous (sticky) air, within the lowest 50 km of Earth’s atmosphere. Both advantages wane in a warming climate, because atmospheric dynamic viscosity increases with temperature, in synergy with the simultaneous engine efficiency reduction. Here, skin friction drag, the dominant term for extra aviation fuel consumption in a future warming climate, is quantified by 34 climate models under a strong emissions scenario. Since 1950, the viscosity increase at cruising altitudes (∼200 hPa) reaches ∼1.5% century‒1, corresponding to a total drag increment of ∼0.22% century‒1 for commercial aircraft. Meridional gradients and regional disparities exist, with low to midlatitudes experiencing greater increases in skin friction drag. The North Atlantic corridor (NAC) is moderately affected, but its high traffic volume generates additional fuel cost of ∼3.8 × 107 gallons annually by 2100, compared to 2010. Globally, a normal year after 2100 would consume an extra ∼4 × 106 barrels per year. Intermodel spread is <5% of the ensemble mean, due to high inter–climate model consensus for warming trends at cruising altitudes in the tropics and subtropics. Because temperature is a well-simulated parameter in the IPCC archive, with only a moderate intermodel spread, the conclusions drawn here are statistically robust. Notably, additional fuel costs are likely from the increased vertical shear and related turbulence at NAC cruising altitudes. Increased flight log availability is required to confirm this apparent increasing turbulence trend.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3