Affiliation:
1. Meakins-Christie Laboratories and
2. Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada H2X 2P2
Abstract
To investigate the effect of lung volume on chest wall and lung mechanics in the rats, we measured the impedance (Z) under closed- and open-chest conditions at various positive end-expiratory pressures (0–0.9 kPa) by using a computer-controlled small-animal ventilator (T. F. Schuessler and J. H. T. Bates. IEEE Trans. Biomed. Eng. 42: 860–866, 1995) that we have developed for determining accurately the respiratory Z in small animals. The Z of total respiratory system and lungs was measured with small-volume oscillations between 0.25 and 9.125 Hz. The measured Z was fitted to a model that featured a constant-phase tissue compartment (with dissipation and elastance characterized by constants G and H, respectively) and a constant airway resistance (Z. Hantos, B. Daroczy, B. Suki, S. Nagy, and J. J. Fredberg. J. Appl. Physiol. 72: 168–178, 1992). We matched the lung volume between the closed- and open-chest conditions by using the quasi-static pressure-volume relationship of the lungs to calculate Z as a function of lung volume. Resistance decreased with lung volume and was not significantly different between total respiratory system and lungs. However, G and H of the respiratory system were significantly higher than those of the lungs. We conclude that chest wall in rats has a significant influence on tissue mechanics of the total respiratory system.
Publisher
American Physiological Society
Subject
Physiology (medical),Physiology
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献