Effects of mean airway pressure and tidal volume on lung and chest wall mechanics in the dog

Author:

Barnas G. M.1,Sprung J.1

Affiliation:

1. Department of Anesthesiology, University of Maryland, Baltimore 21201.

Abstract

Dependencies of the dynamic mechanical properties of the respiratory system on mean airway pressure (Paw) and the effects of tidal volume (VT) are not completely clear. We measured resistance and dynamic elastance of the total respiratory system (Rrs and Ers), lungs (RL and EL), and chest wall (Rcw and Ecw) in six healthy anesthetized paralyzed dogs during sinusoidal volume oscillations at the trachea (50–300 ml; 0.4 Hz) delivered at mean Paw from -9 to +23 cmH2O. Changes in end-expiratory lung volume, estimated with inductance plethysmographic belts, showed a typical sigmoidal relationship to mean Paw. Each dog showed the same dependencies of mechanical properties on mean Paw and VT. All elastances and resistances were minimal between 5 and 10 cmH2O mean Paw. All elastances, Rrs, and RL increased greatly with decreasing Paw below 5 cmH2O. Ers and EL increased above 10 cmH2O. Ecw, Ers, Rcw, and Rrs decreased slightly with increasing VT, but RL and EL were independent of VT. We conclude that 1) respiratory system impedance is minimal at the normal mean lung volume of supine anesthetized paralyzed dogs; 2) the dependency of RL on lung volume above functional residual capacity is dependent on VT and respiratory frequency; and 3) chest wall, but not lung, mechanical behavior is nonlinear (i.e., VT dependent) at any given lung volume.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3