Dynamics of soluble gas exchange in the airways. III. Single-exhalation breathing maneuver

Author:

George S. C.1,Babb A. L.1,Hlastala M. P.1

Affiliation:

1. Department of Chemical Engineering, University of Washington, Seattle 98195.

Abstract

The exchange characteristics of a highly soluble gas with the pulmonary airways during a single-exhalation maneuver were analyzed using a mathematical model previously described by our group (M. E. Tsu et al. Ann. Biomed. Eng. 16: 547–571, 1988). The model integrates the simultaneous exchange of water, heat, and a soluble gas with the pulmonary airways. The purpose of this paper is to provide experimental data for model validation. Exhaled ethyl alcohol concentration profiles of human subjects were measured with an Intoxilyzer 5000 and were plotted against exhaled volume measured with a wedge spirometer. Each subject performed a series of breathing maneuvers in which exhalation flow rate was the only variable. Phase III has a positive slope (0.047 +/- 0.0089 mol alcohol in air.mol alcohol in alveolus-1.l-1) that is statistically independent (P > 0.05) of flow rate. Reducing the molecular diffusion coefficient of alcohol in the nonperfused tissue layer improves the fit of the model to the experimental data. The optimal diffusion coefficient of alcohol for all subjects was 12 +/- 5.3 (SD) x 10(-7) cm2/s, which is 8% of the diffusion coefficient of alcohol in water (1.6 x 10(-5) cm2/s). We concluded that the experimental data showing a positive slope of the exhaled alcohol profile are consistent with a reduced diffusivity of alcohol in the respiratory mucosa. The reduced diffusion coefficient enhances reabsorption of alcohol by the airways on exhalation and creates a positive phase III slope.

Publisher

American Physiological Society

Subject

Physiology (medical),Physiology

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3